翻訳と辞書
Words near each other
・ Meyer Rosenbaum
・ Meyer Rosenbaum (I)
・ Meyer Rosenbaum (II)
・ Meyer Schapiro
・ Meyer Schleifer
・ Meyer set
・ Meyer Shapiro
・ Meyer Site
・ Meyer Solomon
・ Meyer Sound Laboratories
・ Meyer Theatre
・ Meyer Township, Michigan
・ Meyer v. Astrue
・ Meyer v. Grant
・ Meyer v. Nebraska
Meyer wavelet
・ Meyer Waxman
・ Meyer Weisgal
・ Meyer Werft
・ Meyer Wolfe
・ Meyer zum Pfeil
・ Meyer's Castle
・ Meyer's friarbird
・ Meyer's goshawk
・ Meyer's law
・ Meyer's Little Toot
・ Meyer's parrot
・ Meyer's theorem
・ Meyer, Illinois
・ Meyer-Kiser Building


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Meyer wavelet : ウィキペディア英語版
Meyer wavelet
The Meyer wavelet is an orthogonal wavelet proposed by Yves Meyer. It is infinitely differentiable with infinite support and defined in frequency domain in terms of function \nu as:
: \Psi ( \omega) := \begin
\frac \nu \left(\frac -1\right)\right) e^ & \text 2 \pi /3<|\omega|< 4 \pi /3, \\
\frac \nu \left(\frac-1\right)\right) e^ & \text 4 \pi /3<| \omega|< 8 \pi /3, \\
0 & \text, \end
where:
: \nu (x) := \begin
0 & \text x < 0, \\
x & \text 0< x < 1, \\
1 & \text x > 1. \end
There are many different ways for defining this
auxiliary function, which yields variants of the Meyer wavelet.
For instance, another standard implementation adopts
: \nu (x) := \begin
(35-84x+70-20) & \text 0< x < 1, \\
0 & \text. \end
The Meyer scale function is given by:
: \Phi ( \omega) := \begin
\frac | \omega|< 2 \pi /3, \\
\frac \nu \left(\frac -1\right) \right) & \text 2\pi/3<|\omega|< 4\pi/3, \\
0 & \text. \end
In the time-domain, the waveform of the Meyer mother-wavelet has the shape as shown in the following figure:
==References==

* Meyer (Y.), ''Ondelettes et Opérateurs'', Hermann, 1990.
* Daubechies, (I.), ''Ten lectures on wavelets'', CBMS-NSF conference series in applied mathematics, SIAM Ed., pp. 117–119, 137, 152, 1992.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Meyer wavelet」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.